Tag Archives: Obama administration

EPA’s New Ozone Rule: Part 8

In 2008, the EPA under George W. Bush reduced the maximum allowable concentration of ground-level ozone from 80 ppb to 75 ppb1. Two years later, the EPA decided to reduce the limit still further to 70 ppb.2. What made the EPA decide to do so in only two years? This was unusual because the Clean Air Act only requires the EPA to review its policy on ozone once every five years, the next review required in 20133. What was the rush?

In April 2008, soon after the EPA lowered the standard, the Clean Air Scientific Advisory Committee (CASAC, EPA’s scientific advisory board on clean air4) sent the EPA a letter strongly disagreeing with the new standard, claiming that the new ozone standard was not low enough to provide a margin of safety. It wanted a primary standard between 60 and 70 ppb. In addition, CASAC felt that a different secondary standard should be established to protect property and the environment. This standard should be cumulative rather than be based on highest average readings5.

A month later, a number of groups challenged EPA’s standards in court. Some of them felt the standard went too far: business interests and some states. Other petitioners felt the standard did not go far enough: environmental organizations, public health organizations, and other states. These lawsuits were consolidated into one: State of Mississippi et al v. U.S. Environmental Protection Agency. In March 2009, the EPA filed an unopposed motion to hold the lawsuit in abeyance while it reviewed the new standard. 6 The revised standard, which lowered the maximum allowable concentration from 75 ppb to 70 pbb, was published in July 20117. In September 2011, the Obama administration requested that the EPA rescind its new standard8.

The document which lays out this new standard, National Ambient Air Quality Standards for Ozone, Final Preamble published July 7, 2011, lays out a detailed explanation of EPA thinking: why it didn’t think 75 ppb was a good enough standard, why 60 ppb was too low and 70 ppb was about right, and why it felt a new secondary standard to protect property and the environment was necessary9. I am going to try to summarize that thinking here.

Footnotes:

  1. U.S. Environmental Protection Agency, Integrated Science Assessment for Ozone and Related Photochemical Oxidants, Third External Review Draft, June 2012, p.lxxiii.
  2. U.S. Environmental Protection Agency, National Ambient Air Quality Standards for Ozone, Final Preamble, 2011, p.6.
  3. United States Code, Title 42, Chapter 85, §7409 (d)(1). To view, click here.
  4. The Clean Air Act requires that an independent scientific body review the NAAQS at five-year intervals and make recommendations. CASAC currently fulfils this role. See United States Code, Title 42, Chapter 85, §7409 (d)(2). To view, click here.
  5. U.S. Environmental Protection Agency, National Ambient Air Quality Standards for Ozone, Final Preamble, 2011, p.18.
  6. ibid.pp.29-30
  7. This is the National Ambient Air Quality Standards for Ozone, Final Preamble, 2011 that has been referred to above.
  8. Statement by the President on the Ozone National Ambient Air Qualities Standards. White House website. To view, click here.
  9. U.S. Environmental Protection Agency, National Ambient Air Quality Standards for Ozone, Final Preamble, 2011. The rationale for the primary standard (section II) starts on p. 34 and the rationale for the secondary standard (section III) starts on p. 192.

EPA’ s New Ozone Rule: Part 5

On September 2, 2011, the Obama administration rescinded an EPA proposal to tighten standards on ozone in the atmosphere at ground level1.   This proposal would have:

  • Lowered the maximum allowable concentration of ground-level ozone from 75 parts per billion (ppb) to 70 ppb2. This is the primary standard whose purpose is to safeguard human health.
  • Introduced a secondary standard based on a cumulative total of ozone exposure, 13 parts per million-hours (ppm-hour) in a three month period2. One ppm-hour is the exposure one receives from breathing an atmosphere of 1 ppm ozone for one hour. Two ppm-hours is the exposure of 1 ppm for 2 hours or 2 ppm for 1 hour. The purpose of the secondary standard is to protect property, quality of life, and wildlife habitat.

The question we want to consider is: Did it serve the public interest to rescind the proposed regulation or would it have been better to allow the regulation to become law? Does the benefit that the regulation provides the public outweigh the costs or vice versa?

Some might argue that a regulation that is shown to save lives offers a benefit that outweighs all costs, but that isn’t necessarily true. We put a finite price on human life all the time: insurance companies, the courts, the medical profession, governments. To show why we must do this, ask yourself this question: suppose a single person was in grave danger but could be rescued for a billion dollars. Should the government pay a billion dollars to rescue that individual? There is a raging debate how about much money to spend on medical care for the poor at a cost much less than a billion dollars per life. There are limits to how much we can spend to rescue people, especially when the costs can affect the business and economic climate3.

Another example: suppose we want to institute environmental regulation X. X will save the lives of 1000 people but will cause 10,000 people to be laid off from their jobs. Is it worth it? What if it will save the lives of 5,000 people? 10,000 people? 100,000 people? What if X will reduce tax revenues needed for schools, sanitation, police and fire services? When the question is phrased as a matter of extremes (X will save a million lives at an economic cost of ten million dollars, or X will save a handful of lives but will wreak economic havoc), most of us would find the question easy to answer. But when the costs and benefits are more balanced, that’s when it becomes tricky.

Of course, saving lives are not the only benefits of environmental regulations4. Tougher ozone standards promise to reduce the amount and severity of respiratory illness5, even to increase general wellness, helping to keep our lung function from deteriorating over long periods of time. The atheletes among us will be able to retain their abilities longer, but even ordinary people may be able to retain their vigor longer into their old age.

Lower ozone levels could particularly benefit those with pre-existing respiratory conditions, such as asthma, chronic bronchitis, and emphysema5. While people with these conditions represent just a fraction of the population, they still deserve our consideration. We have a legislative precedent: the Americans with Disabilities Act (ADA) has made life easier for millions of people6. If we demand accommodations for the blind, the deaf, and wheelchair-bound, we should also make accommodation for those with breathing difficulties.

There are also economic benefits from tougher ozone standards. If even low concentrations of ozone make some people ill, then maintaining lower concentrations will mean less illness. That means lower health care costs, less productivity lost at work, less absences at school. Ozone also damages plant life7; lower ozone levels will benefit agriculture as well as protect other forms of property (ozone is murder on certain types of rubber8). Less tangible is the damage that can be prevented to our national parks and other wildlife habitat.

On the other hands, there could be substantial costs. Ozone is not emitted directly by industry but is formed from other chemicals released into the air9. To reduce ozone, industry (as well as private cars and trucks) must curtail these emissions, and that can be expensive. If the costs are too great, companies will become less profitable, will need to cut back on hiring, will yield less tax revenue, may be tempted to move to other jurisdictions with less onerous regulation. The EPA is prohibited by law from allowing cost considerations to influence its decision to impose new and stricter regulations10. But we are not so prohibited, and we need to weigh costs against benefits to determine how society’s interests are best served.


Footnotes:

  1. Statement by the President on the Ozone National Ambient Air Qualities Standards. White House website. To view, click here.
  2. U.S. Environmental Protection Agency, National Ambient Air Quality Standards, 2010, p. 1. To view the document, click here.
  3. A related concept is the value of statistical life (VSL), which is a measure of how much people are willing to pay for reduction of danger to life. For a discussion on determining VSL in three provinces in China, see the paper The Value of Statistical Life by Jie He and Hua Wong, World Bank eLibrary, which you can view by clicking here. See also the Wikipedia article Value of Life which you can view by clicking here.
  4. For discussions of mortality associated with ozone exposure, see the U.S. Environmental Protection Agency, Integrated Science Assessment for Ozone and Related Photochemical Oxidants, Second External Draft, September 2011, Sections 2.6.2, 6.6, 7.4.10, and 7.7. To view the document, click here, then click the button “Get the Report.”
  5. For discussions of health conditions associated with ozone exposure, see the U.S. Environmental Protection Agency, Integrated Science Assessment for Ozone and Related Photochemical Oxidants, Second External Draft, September 2011, Sections 2.6, 6.2 through 6.5, and 7.3 through 7.6. To view the document, click here, then click the button “Get the Report.”
  6. For discussions of the effect of ozone on lung health, see the U.S. Environmental Protection Agency, Integrated Science Assessment for Ozone and Related Photochemical Oxidants, Second External Draft, September 2011, Sections 6.2 and 7.2. To view the document, click here, then click the button “Get the Report.”
  7. The U.S. Equal Employment Opportunity Commission maintains a website with a good summary of the ADA, which you can view by clicking here.
  8. For discussions of the effect of ozone on vegetation and the environment, see the U.S. Environmental Protection Agency, Integrated Science Assessment for Ozone and Related Photochemical Oxidants, Second External Draft, September 2011, Sections 2.7 and 9. To view the document, click here, then click the button “Get the Report.”
  9. See my post “EPA’s New Ozone Rule, Part 4” which you can view by clicking here.
  10. U.S. Environmental Protection Agency, National Ambient Air Quality Standards, 2010, p. 9. To view the document, click here.

    Actually, this prohibition is not actually stated by the Clean Air Act, but has been inferred by the courts. It is based on Section 109 of the Clean Air Act (United States Code, Title 42, Section 7409, which you can read by clicking here) which states in subsection (b)(1): “National primary ambient air quality standards…based on such criteria and allowing an adequte margin of safety, are requisite to protect the public health.” Similarly, it states in subsection (b)(2): Any national secondary ambient air quality standard…is requisite to protect the public welfare from any known or anticipated adverse effects associated with the presence of such air pollutant in the ambient air.” The Supreme Court in its ruling in the case Whitman v. American Trucking Associations, Inc. (which you can read by clicking here) inferred from the lack of mention of cost as a criteria in determining NAAQS that cost was excluded. This is because in other places, the Clean Air Act explicitly does allow cost as a criteria. As an Orthodox Jew, I take great pleasure from this argument — it could have come straight from the Talmud.

EPA’s New Ozone Rule Part 2

Recently, the Obama administration withdrew a proposal to reduce the maximum allowable level of ground-level ozone concentration in the atmosphere1. The question that I wish to address is whether the benefits that might accrue to our nation from such a reduction are greater than the costs, particularly to industry. To analyze this problem, we need to understand what ground-level ozone is, how it is formed, what man-made processes promote ozone formation, and what industry must do to reduce the level of ozone.

Ozone is a form (called an allotrope2) of oxygen, the eighth element in the chemical periodic table3. Pure oxygen usually exists as molecules consisting of two oxygen atoms each, represented by the chemical formula O2. Ozone consists of molecules of three oxygen atoms each, represented by the chemical formula O3. Despite the fact that ozone consists of nothing but oxygen atoms, it is far more chemically reactive than ordinary oxygen4. For example, one cannot breathe pure ozone: breathing ozone in concentrations fifty parts per million or higher is probably fatal within 60 minutes5. Likewise, ozone can dissolve far more readily in water than ordinary oxygen6 and attacks substances (such as certain rubbers) that are not touched by ordinary oxygen7.

Breathing ozone is harmful to health even in low concentrations. Breathing air with 1.5 parts per million (ppm) of ozone for more than two hours can result in severe lung irritation with fluid-buildup, chest pain and cough, and extreme fatigue5. Ozone is known to attack and injure the tissues in the upper respiratory system, although the damage can be repaired by the body in a matter of weeks8.

It is important to distinguish between ozone in the troposphere (that part of the atmosphere that rests on the surface of the Earth) and the stratosphere (that layer of the atmosphere between about 6 and 31 miles above the surface at temperate latitudes). About 90% of all ozone in the atmosphere is in the stratosphere where it performs the very important function of absorbing high-energy ultraviolet radiation from the sun (all of the UV-c rays, most of the UV-b rays, and about half of the UV-a rays)9, preventing them from reaching the surface of the Earth where they would harm life. This ozone poses no dangers to humans; on the contrary, it helps make life possible. It is the 10% of the ozone in the atmosphere that exists in the troposphere (called tropospheric or ground-level ozone) that poses problems and is the subject of the proposed government regulation.

According to NASA, ground-level ozone levels without the presence of human activity should be about 10 to 15 parts per billion (ppb, one part per million equals 1000 ppb)10. Industrial activity has boosted those levels significantly such that the Environmental Protection Agency has established a limit of 80 ppb10. It appears to me that most people are able to breathe in that level of ozone without ill effects, or respiratory illnesses would be much more common than they are now. The question is whether people with respiratory problems, the very young, and the very old are adversely affected. If they are, is it cost effective to lower levels of ozone to improve their quality of life? Also, could long-term exposure to 80 ppb of ozone cause any significant health effects?

In my next post, I want to discuss how ozone is produced.


Footnotes:

  1. Statement by the President on the Ozone National Ambient Air Qualities Standards. White House website. To view, click here.
  2. For a good explanation of allotropes, see the Diffen website, Oxygen vs Ozone.
  3. See the WebElements Periodic Table on oxygen.
  4. Rachel Cassiday and Regina Frey, Washington University.Chemical Properties of Ozone. To view, click here.
  5. Ozone Levels and Their Effects, edited by Den Rasplicka, OzoneLab Instruments website. To view, click here.
  6. Bruce Mattson, Janel Michels, Stephanie Gallagos, Creighton Univerisity.Microscale Gas Chemistry, Part 28 Mini-Ozone Generator: 800 nanomoles/minute p.7 paragraph “Office Paper.” To view, click here.
  7. Bassam Z. Shakhashiri, University of Wisconsin – Madison.Chemical of the Week: Ozone paragraph 7. To view, click here.
  8. U.S. Environmental Protection Agency website, Ground-Level Ozone: Health. To view, click here. For a more detailed treatment, see Health Effects of Ozone in the General Population, which you can view by clicking here.
  9. U.S. National Aeronautics and Space Administration Ozone Hole website, Ozone Facts tab, paragraph 2. To view, click here.
  10. Jeannie Allen, The Ozone We Breathe, NASA Earth Observatory website. To view, click here.